Exome Enrichment and SOLiD Sequencing of Formalin Fixed Paraffin Embedded (FFPE) Prostate Cancer Tissue

نویسندگان

  • Roopika Menon
  • Mario Deng
  • Diana Boehm
  • Martin Braun
  • Falko Fend
  • Detlef Boehm
  • Saskia Biskup
  • Sven Perner
چکیده

Next generation sequencing (NGS) technologies have revolutionized cancer research allowing the comprehensive study of cancer using high throughput deep sequencing methodologies. These methods detect genomic alterations, nucleotide substitutions, insertions, deletions and copy number alterations. SOLiD (Sequencing by Oligonucleotide Ligation and Detection, Life Technologies) is a promising technology generating billions of 50 bp sequencing reads. This robust technique, successfully applied in gene identification, might be helpful in detecting novel genes associated with cancer initiation and progression using formalin fixed paraffin embedded (FFPE) tissue. This study's aim was to compare the validity of whole exome sequencing of fresh-frozen vs. FFPE tumor tissue by normalization to normal prostatic FFPE tissue, obtained from the same patient. One primary fresh-frozen sample, corresponding FFPE prostate cancer sample and matched adjacent normal prostatic tissue was subjected to exome sequencing. The sequenced reads were mapped and compared. Our study was the first to show comparable exome sequencing results between FFPE and corresponding fresh-frozen cancer tissues using SOLiD sequencing. A prior study has been conducted comparing the validity of sequencing of FFPE vs. fresh frozen samples using other NGS platforms. Our validation further proves that FFPE material is a reliable source of material for whole exome sequencing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-strand DNA library preparation improves sequencing of formalin-fixed and paraffin-embedded (FFPE) cancer DNA

DNA derived from formalin-fixed and paraffin-embedded (FFPE) tissue has been a challenge to large-scale genomic sequencing, due to its low quality and quantities. Improved techniques enabling the genome-wide analysis of FFPE material would be of great value, both from a research and clinical perspective.Comparing a single-strand DNA library preparation method originally developed for ancient DN...

متن کامل

Next-Generation Sequencing of RNA and DNA Isolated from Paired Fresh-Frozen and Formalin-Fixed Paraffin-Embedded Samples of Human Cancer and Normal Tissue

Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable resource for clinical research. However, nucleic acids extracted from FFPE tissues are fragmented and chemically modified making them challenging to use in molecular studies. We analysed 23 fresh-frozen (FF), 35 FFPE and 38 paired FF/FFPE specimens, representing six different human tissue types (bladder, prostate and colon carci...

متن کامل

Deep Clonal Profiling of Formalin Fixed Paraffin Embedded Clinical Samples

Formalin fixed paraffin embedded (FFPE) tissues are a vast resource of annotated clinical samples. As such, they represent highly desirable and informative materials for the application of high definition genomics for improved patient management and to advance the development of personalized therapeutics. However, a limitation of FFPE tissues is the variable quality of DNA extracted for analyse...

متن کامل

Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics

Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies....

متن کامل

Tackling formalin-fixed, paraffin-embedded tumor tissue with next-generation sequencing.

Most tumor samples available for clinical genotyping are formalin-fixed and paraffin-embedded (FFPE), but there has been relatively little published on the suitability of such samples for next-generation sequencing approaches. A new study by Wagle and colleagues shows that a combination of hybridization-capture and deep sequencing yields high-quality data from FFPE specimens.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012